Appendix C Convexity and Optimization

Here we review the basic theory of optimization problems and associated definitions.

Convex Functions and Sets

Convexity is central to the theory of optimization. We begin with a definition of a convex function:

DEFINITION C.5 A function $f: \mathbb{R}^n \to R$ is **convex** on a set $X \subseteq \mathbb{R}^n$ if, for all $\mathbf{x}, \mathbf{y} \in X$ and $\alpha \in [0, 1]$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

If the inequality above is strict for all $\mathbf{x} \neq \mathbf{y}$, then f is said to be *strictly convex*. A function f is said to be *concave* if -f is convex and *strictly concave* if -f is strictly convex.

Convexity can also be defined for sets:

DEFINITION C.6 A set $X \subseteq \Re^n$ is a convex set if, for all $\mathbf{x} \in X$, $\mathbf{y} \in X$ and $\alpha \in [0,1]$

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in X$$
.

A point of the form $\alpha \mathbf{x} + (1-\alpha)\mathbf{y}$ is referred to as a *convex combination* of the points \mathbf{x} and \mathbf{y} . A convex set, therefore, is one with the property that any convex combination of points in the set is also contained in the set. We also have

DEFINITION C.7 A point \mathbf{x} is said to be an extreme point of a convex set X if there are no two distinct points $\mathbf{y}, \mathbf{z} \in X$ with $\mathbf{y} \neq \mathbf{z}$ such that $\mathbf{x} = \alpha \mathbf{z} + (1 - \alpha)\mathbf{y}$ for some $0 < \alpha < 1$.

In other words, x cannot be expressed as the convex combination of two distinct points in X.

Let C^1 denotes the class of continuously differentiable functions on \Re^n and C^2 denote the class of all twice-continuously differentiable functions on \Re^n . (See below.) Here are some properties of convex functions: